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Pathway-Specific Dopamine Abnormalities in

Schizophrenia

Jodi J. Weinstein, Muhammad O. Chohan, Mark Slifstein, Lawrence S. Kegeles, Holly Moore,

and Anissa Abi-Dargham

ABSTRACT

In light of the clinical evidence implicating dopamine in schizophrenia and the prominent hypotheses put forth
regarding alterations in dopaminergic transmission in this disease, molecular imaging has been used to examine
multiple aspects of the dopaminergic system. We review the imaging methods used and compare the findings across
the different molecular targets. Findings have converged to suggest early dysregulation in the striatum, especially in
the rostral caudate, manifesting as excess synthesis and release. Recent data showed deficit extending to most
cortical regions and even to other extrastriatal subcortical regions not previously considered to be “hypodopa-
minergic” in schizophrenia. These findings yield a new topography for the dopaminergic dysregulation in
schizophrenia. We discuss the dopaminergic innervation within the individual projection fields to provide a
topographical map of this dual dysregulation and explore potential cellular and circuit-based mechanisms for brain
region—dependent alterations in dopaminergic parameters. This refined knowledge is essential to better guide

translational studies and efforts in early drug development.
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HISTORICAL PERSPECTIVE ON DOPAMINE
RESEARCH IN SCHIZOPHRENIA

Dopamine (DA) has been a focus of schizophrenia (SZ) research
for decades, yielding two prior conceptual formulations for
involvement of DA in SZ. In 1966, Rossum (1) proposed a state
of excess dopaminergic stimulation in patients with SZ, which
was substantiated later by the discovery of the D, receptor
binding profiles of antipsychotics and the psychotogenic effects
of DA agonists (2-4). This state of excess dopaminergic
stimulation was later reformulated as an imbalance between
excess subcortical DA and a deficit in cortical DA, in light of
evidence suggesting a prefrontal cortical deficit in SZ and the
prominent role of DA in mediating prefrontal-dependent cogni-
tive processes (5,6). The availability of imaging tools to measure
aspects of dopaminergic transmission in vivo allowed testing of
these formulations in patients. Improved scanner technology
enabled better anatomic resolution. Earlier detection and
awareness of the prodromal phase of the disease (7,8) resulted
in testing earlier stages of SZ (9-11), whereas stress paradigms
(12,13) allowed probing responsiveness of the system to a
relevant risk factor for the disease (14,15), together yielding a
replicable set of findings across laboratories documenting
excess presynaptic dopaminergic transmission in the striatum,
confirming the original formulation. Furthermore, data from our
laboratory provided new evidence for a cortical DA deficit (16),
supporting the second formulation but also expanding it to
multiple extrastriatal regions not previously considered to be
“hypodopaminergic” in SZ.

ISSN: 0006-3223

The topic of this review is a new topographical mapping of
DA dysregulation in SZ. First, we describe the imaging
methods used to examine dopaminergic indices and findings
in SZ. We then review dopaminergic innervation and its
imaging-relevant targets within individual projection fields to
provide a topographical map of the findings and suggest
potential mechanisms for brain region—-dependent DA dysre-
gulation in SZ. Finally, we discuss future directions.

METHODOLOGY FOR IMAGING THE DA SYSTEM

Positron emission tomography (PET) and single photon emis-
sion computed tomography (SPECT) have been used to
measure DA-related parameters via administration of radio-
ligands that bind to receptors, transporters, or other target
molecules or, alternatively, that trace a metabolic pathway. For
radioligands that reversibly bind to receptors, the most
commonly derived parameter is the binding potential (BP)
(17,18), which is proportional to Bayai/Kp, where Bayai is the
concentration of the target molecule available for binding to
the radiotracer, and Kp is the equilibrium dissociation constant
of tracer for the target. There are several versions of BP,
depending on which concentration of tracer is used as a
reference value. For the frequently used binding potential
relative to the nondisplaceable compartment (BPnp)
(Figure 1A-C), the reference is the nondisplaceable compart-
ment, composed of the sum of the free plus nonspecifically
bound radiotracer in brain; BPyp = fND*BAVAIL/KDy where
fup is the free fraction of the nondisplaceable radiotracer

© 2016 Society of Biological Psychiatry 1
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concentration. BPyp is an indicator of target molecule avail-
ability, based on the assumption that Kp and fyp are not
different across groups. BavaiL, as opposed to the total target
concentration Byax, accounts for the masking of some of the
targets by the binding of endogenous ligands. BP\p is also the
ratio of specifically bound to nondisplaceable radiotracer
concentrations at equilibrium, representing the associated
signal-to-noise ratio [see Innis et al. (17) for complete defini-
tions]. A BPyp <0.5 (i.e., signal lower than half of background)
is considered too low to provide meaningful information.

Tracers with moderate affinity for DA Do-like receptors (D>
and D3 receptors, hereafter referred to as D,), such as
['"Clraclopride and ['?®ljiodobenzamide, provide reliable BPp
in the striatum (Figure 1C). ['®F]Fallypride has an order of
magnitude higher affinity (19,20) and provides reliable quanti-
fication in striatum, thalamus, midbrain, hippocampus, amyg-
dala, and temporal cortex. Higher affinity tracers, such as
['"CIFLB457 (21) or ['?®llepidepride (22), can be used to
quantify D, density in cortex, although their equilibration is
prohibitively slow for quantification in striatum. Pharmacolog-
ically, all these tracers are antagonists. [''C]-(+)-PHNO is a D5
preferring agonist (23-25). Tracers for D;-like receptors
(D; and Ds receptors, hereafter D4) include ["'CINNC112 and
['"CISCH23390 (26,27). Both tracers have been used to
quantify Dq in cortex and striatum, although the BPyp of
['"C]SCH23390 is <0.5 in cortex.

Tracers for D, receptors are sensitive to changes in the
concentration of DA through competitive interaction. Pharma-
cologic challenges that increase synaptic DA, such as con-
comitant release and reuptake blockade by amphetamine or
reuptake blockade by methylphenidate, decrease BPyp,

2 Biological Psychiatry i, 2016; ©:1m-1m www.sobp.org/journal
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Figure 1. Dopaminergic imaging
targets. Schematic of imaging meth-
ods used to measure aspects of the
dopamine system in vivo. Graphic
depicts progression of dopamine from
synthesis (D), storage (A), to release
(E, F), then either reuptake by dopa-
mine transporter (B) or binding to
receptor (C). Imaging targets and
related paradigms are described in
the text. AADC, amino acid decarbox-
ylase; o-MPT, alpha-methyl-para-
tyrosine; BP, binding potential; BPyp,
binding potential relative to the non-
displaceable compartment; ABPyp,
percent change in BPy\p between
conditions; COMT, catechol-O-
methyltransferase; DA, dopamine;
DAT, DA transporter; K;,, steady state
['®FIDOPA uptake rate constant; K,
steady state ['®FJDOPA uptake rate
constant as defined by Kumakura
et al. (35); K, K, relative to ['®F]
DOPA concentration in cerebellum;
Kioss, brain efflux rate constant for
['®FIDOPA metabolites; MAO, mono-
amine oxidase; VMAT2, vesicular
monoamine transporter 2.

E. DA release capacity

by change in tracer binding
to receptor following
psychostimulant challenge
(ABPyp)

F. D, receptor
occupancy by DA by
change in tracer binding
following DA-depletion
paradigm, such as a-MPT
(ABPyp)

whereas depletion paradigms that reduce baseline synaptic
DA, such as blockade of tyrosine hydroxylase activity with
alpha-methyl-para-tyrosine, increase BPyp. These effects can
be quantified as ABPyp, the percent change of BP\p across
conditions (Figure 1E, F). D, ligand displacement by challenge-
induced DA release occurs at the subset of D, receptors that
are in close proximity to DA release sites (28-32). This has led
to the postulation that net change in tracer binding at these
perisynaptic receptors may comprise the PET “DA release”
signal (33), which refers to our PET measurement of
intrasynaptic DA levels, either evoked (as a result of amphet-
amine administration) or basal (measured with the depletion
paradigm).

['®FIDOPA is a substrate for amino acid decarboxylase,
which catalyzes L-dihydroxyphenylalanine (DOPA) into DA (34).
In terminals containing amino acid decarboxylase,
['®FIDOPA is converted to 6-fluorodopamine (['®F|6-FDA), a
substrate for vesicular monoamine transporter 2 (VMAT2), which
loads presynaptic DA into vesicles (Figure 1D). ['®F]6-FDA
cycles through exocytosis, reuptake through the DA transporter
(DAT), and reloading into vesicles. This is generally treated as an
irreversible process. The outcome measure is K;,, the steady-
state uptake rate constant of the tracer, characterizing
['®F]6-FDA formation when the concentration of ['®FIDOPA in
arterial plasma and in brain are at a hypothetical steady state. Ki,
indicates the capacity for DA synthesis. A related outcome
measure is K;°®, which is the steady-state uptake rate (Ki,)
relative to cerebellum concentration of ['®FIDOPA, rather than
the arterial plasma concentration, but studies using K;°®" require
the implicit assumption that concentration of ['®FIDOPA in the
cerebellum does not differ between groups.


www.sobp.org/journal

Dopamine Topography in Schizophrenia

Quantification of ['®FIDOPA is complicated by formation in
the periphery of the radiolabeled metabolite 3-O-methyl-
FDOPA as a result of catechol-O-methyltransferase activity
(35); pretreatment with entacapone can reduce this effect.
In addition, the irreversibility of ['®F]DOPA uptake is an ideal-
ization, as ['®F]6-FDA is a substrate for both monoamine
oxidase and catechol-O-methyltransferase, and metabolites
diffuse out of the brain, affecting measurement of K;,. Some
models account for this washout with an estimated parameter
called koss (35,36).

[18F]DOPA Kin can be measured in striatum, but extrastriatal
Kin is lower and more difficult to measure. In substantia nigra
(SN), Ki, is approximately half as large as in striatum; in cortex,
it is too low to be interpretable (37). Transporters have
also been imaged using (+)-alpha-[''C]dihydrotetrabenazine
("'CIDTBZ) for VMAT2 (38) (Figure 1A), [''C]JPE2I for DAT
(Figure 1C) in striatal and extrastriatal regions using PET, and
['221BCIT (39) for striatal DAT using SPECT.

IMAGING THE DA SYSTEM IN SZ

We review findings from studies that used molecular neuro-
imaging to investigate the DA system in vivo in SZ—first in
striatum, then in extrastriatal regions—with a focus on cortex
and midbrain (Supplemental Table S1).

Striatum

Presynaptic. Higher striatal ['"®F]DOPA was first reported in
psychosis related to epilepsy and SZ (40). Seven studies
replicated this finding in SZ (9,41-47), whereas two did not
(48,49), and subsequent meta-analyses confirmed the finding
(50,51). Using D, radiotracers and a psychostimulant chal-
lenge, four studies showed higher release in the striatum of
antipsychotic-free patients compared with healthy control (HC)
subjects (52-55). Excess DA release correlated with transient
stimulant-induced worsening of psychotic symptoms in

patients and was observed at disease onset and during
exacerbations but not during periods of remission (56).
Furthermore, baseline synaptic DA assessed with a depletion
paradigm (57) were enhanced in striatum in SZ and were
correlated with amphetamine-induced release in a cohort of
antipsychotic-naive patients (58). Using a higher resolution
scanner and more sophisticated region-of-interest analysis
methods to identify the striatal substructures, we later dem-
onstrated that excess striatal DA was most prominent in the
rostral caudate (59). In the associative striatum (AST), which
contains the rostral caudate, rostral putamen, and postcom-
missural caudate, the effect size was 0.70 compared with 0.14
in the limbic striatum (or ventral striatum) and 0.34 in the
sensorimotor striatum (SMST) (or posterior putamen). This
excess does not seem to be related to excess dopaminergic
innervation, as VMAT2 (60,61) and DAT (62-72) were normal.

Postsynaptic. Several studies have examined striatal D,
availability. A meta-analysis of 23 studies showed small
elevation and greater variability in SZ. When analysis was
limited to antipsychotic-naive patients, patients with SZ and
HC subjects did not differ (51), suggesting that D, increases in
striatum in SZ may be due to prior antipsychotic treatment.
Striatal D, availability is also normal in SZ (27,73-75).

Further support for antipsychotic-induced upregulation of
striatal D, derives from alpha-methyl-para-tyrosine studies
(57-59), which provide a direct measure of “true” D, density
by unmasking the fraction of receptors bound by endogenous
DA. A new analysis of these previously published studies
shows that unmasked BPyp is higher (by 10%-20%) in
previously medicated, but not antipsychotic-naive, patients
compared with HC subjects (Table 1) in striatum (57-59) and in
rostral caudate (59). In contrast, in the same cohorts, alpha-
methyl-para-tyrosine-induced ABPyp showed that striatal DA
levels are 65%-120% higher in both antipsychotic-naive and
previously medicated patients compared with HC subjects.
This finding suggests that striatal dopaminergic hyperactivity

Table 1. Effect of Previous Antipsychotic Exposure on Unmasked BPyp: Binding Potentials From Alpha-Methyl-Para-

Tyrosine Depletion Studies

HC, n or SZ, n or Rx-Free, n or Rx-Naive, n or Rx-Free Rx-Free Rx-Naive
Mean + SD  Mean + SD p Mean + SD Mean + SD  vs. Rx-Naive, p vs. HC, p vs. HC, p
['2%IBZM SPECT: Striatum?® n=18 n=18 n=10 n=28
BPnpBsl 0.722 = 0.091 0.751 = 0.103 .38 0.779 = 0.122 0.716 *= 0.066 .21 A7 .87
BPNDDpr 0.787 = 0.096 0.889 = 0.124 .009 0.930 * 0.147 0.837 = 0.062 A2 .004°¢ .19
["'C]Raclopride PET: Striatum n=18 n=18 n=12 n==6
BPnpBsl 2.53 £ 0.25 2.56 £ 0.52 .83 2.71 £ 0.50 2.25 £ 0.44 .08 19 .07
BPnoDpl” 2.81 £ 0.23 294 £ 054 .35 3.12 £ 0.52 2.59 * 0.42 .048 .04° 12
[''C]Raclopride PET: Rostral Caudate” n=18 n=18 n=12 n==6
BPnpBsl 2.40 = 0.23 241 =045 .89 2.54 + 0.43 2.16 + 0.42 .10 .25 .10
BPNDDpr 2.61 + 0.27 277 £ 049 25 291 + 047 2.47 = 0.43 .07 .03°¢ .36

BPnb, binding potential relative to the nondisplaceable compartment; BPypBsl, D, BPyp in baseline state, partially masked by baseline levels of
endogenous dopamine; BPypDpl, unmasked D, BPyp in the dopamine-depleted state; HC, healthy control participants; IBZM, iodobenzamide;
PET, positron emission tomography; Rx-free, antipsychotic-free, previously medicated patients; Rx-naive, antipsychotic-naive patients; SPECT,
single photon emission computed tomography; SZ, patients with schizophrenia.

@Abi-Dargham et al., 2000 (57).

bsignificant one-way analysis of variance comparing BPypDp! for Rx-free, Rx-naive, and HC (p < .05).
°Significant post hoc t test for BPypDpl, Rx-free compared with HC (but not significant for Rx-naive compared with HC).

9Kegeles et al., 2010 (59).
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is present regardless of prior antipsychotic treatment and thus
a more reliable index of DA dysregulation than receptor
upregulation.

Clinical Correlates of Striatal Findings. The striatal
dopaminergic hyperactivity in SZ is associated with the
psychotic symptoms of the illness. It was shown to extend
to physiologic conditions under psychosocial stress and to be
most enhanced in AST and SMST in antipsychotic-naive
patients and in the prodrome (14). Elevated striatal ['®FJDOPA
uptake also precedes the onset of psychosis (76); correlates
with greater severity of prodromal symptoms and neuropsy-
chological impairment; predicts conversion; and, in both the
prodrome and SZ, relates negatively to prefrontal cortical
activation during cognitive tasks (43,77) [but also see Fusar-
Poli et al. (78)]. It is also predominant in the AST (79,80).

Furthermore, excess striatal DA predicts treatment
response of psychosis to antipsychotics (58) and is higher in
patients who respond to antipsychotics (81). Patients with SZ
(82) and individuals at clinical high risk for SZ (11) with
comorbid substance use display a blunted striatal DA release.
However, despite this presynaptic blunting, D, receptors
remain supersensitive to stimulation, leading to psychosis.
This suggests two distinct alterations in psychosis: excess
presynaptic release in striatum and a functional supersensi-
tivity of striatal D,.

Cortex

Presynaptic. Using [''CIFLB457, we showed significant
blunting of DA release throughout the cortex in SZ. DA release
in the dorsolateral prefrontal cortex was significantly positively
associated with working memory-related blood oxygen level-
dependent activation, suggesting a relationship between
blunted release and deficits of frontal cortical function (16).
['®FIDOPA (45-48) reports in the cortex are uninterpretable (37).

Postsynaptic. D, availability in SZ is normal in prefrontal
(16,83-85), occipital (16,84), parietal (16,84), entorhinal (86),
anterior cingulate (16,83,87) [exception in Suhara et al. (84)),
and insular (16,86) cortices. A meta-analysis [excluding
Slifstein et al. (16)] found no differences in temporal cortex
(88). One study reported lower binding in uncus (87), whereas
another did not (16).

Studies of prefrontal cortical D4 availability in SZ yielded
inconsistent results of increases (74,75) and decreases (27)
compared with HC subjects (Supplemental Table S1). To
reconcile these findings, both D4 tracers were examined in
the same subjects (89,90) and showed similar alteration using
either tracer, suggesting cohort-related effects rather than
tracer differences. Prior exposure to antipsychotics may
explain some of these discrepancies, as higher D4 levels were
observed only in antipsychotic-naive patients, and duration of
antipsychotic-free interval positively correlated with higher
binding in previously treated patients (75).

Extrastriatal Subcortical Regions and Midbrain

Presynaptic. ['®FIDOPA uptake in SZ is normal in thalamus
(47) and entorhinal cortex (47) but enhanced in amygdala (46)
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and midbrain (46,91). One study reported higher ['®F[DOPA
utilization (K) and turnover (kjoss) in midbrain, whereas K;, was
numerically lower (46). Another reported higher K;°*" in the
midbrain, which correlated with symptom severity in SZ (91)
and predicted conversion in subjects with clinical high risk for
SZ (92). We measured significant blunting of amphetamine-
induced DA release measured by [''C]JFLB457 displacement in
extrastriatal subcortical regions including midbrain (16). Thus,
for the amygdala and midbrain, PET indices of presynaptic
DA synthesis and turnover and amphetamine-evoked DA
release seem discrepant. If this discrepancy is true, it may
suggest elevated enzymatic activity in the presence of lower
cytoplasmic and vesicular pools of DA in midbrain in SZ
(see subsequent discussion).

Using [''CIPE2I, one study reported higher DAT in the
thalamus but not in SN (72). However, the small sample size
and low BPyp suggest caution in interpreting this study.
VMAT2 was normal in extrastriatal regions (61) except for
ventral midbrain, where an increase was reported (93);
however, as BPyp was <0.5, this finding should also be
considered with caution.

Postsynaptic. Of the nine studies in thalamus (16,84-87,
94-97), only one [Lehrer et al. (94), which overlaps with
Buchsbaum et al. (98)] found lower D, in SZ, and a meta-
analysis (88) was negative. Likewise, no differences were found
in globus pallidus (97), amygdala (16,86,87), entorhinal cortex
(16,86), or hippocampus (84,86,87). In SN, normal (16,86,97,99),
higher (87), and lower (96) D, availability was reported, and a
meta-analysis (88) was negative. No differences in Dy avail-
ability have been observed in extrastriatal subcortical regions of
interest (Supplemental Table S1).

Summary of Imaging Findings

Four main dopaminergic alterations have emerged in SZ: 1) DA
synthesis and release capacity are increased in the striatum
(51). 2) Although needing replication, DA release capacity in
prefrontal cortical and other extrastriatal regions is decreased
(16). 3) There is subregional heterogeneity in the DA dys-
regulation within the striatum. The rostral caudate and the AST
in general show lower DA release capacity than the SMST in
HC subjects (100), but not in patients with SZ because of a
prominent increase in the AST (9,14,59). Supportive evidence
for the prominent role of DA dysregulation in AST also derives
from studies of prodrome (9,14). 4) Postsynaptic receptors and
transporters do not show a reliably detectable altered expres-
sion either in the striatum or in extrastriatal regions of the
brain in SZ.

TOPOGRAPHY AND SYNAPTIC CHARACTERISTICS
OF DOPAMINERGIC PROJECTIONS

To understand the abnormal PET DA signal in SZ, we consider
the regional anatomic factors that may affect it. We review
the complex topography and chemical neuroanatomy of DA
systems underlying PET indices of basal and evoked DA
release.

DA projections comprise the retrorubral field (A8), SN (A9),
and ventral tegmental area (A10) (Figure 2) (101-103). These
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Figure 2. Topography of dopaminergic innervation and receptor distribution. Schematic representation of distributions of dopamine (DA) D and D,
receptors (left hemispheres) and patterns of dopaminergic innervations (right hemispheres) in select primate (left panel) and rodent (right panel) brain regions.
Left hemispheres: Brown and black squares depict D1 and D, receptors, respectively. Throughout the primate and rodent brain, D; receptors are pres-
ent at a higher density than D, receptors. The striatum, in particular the caudate-putamen, has the highest densities of DA receptors. DA receptors are also
present in medium to low densities in the cortex, pallidum, and midbrain. Receptor densities are relatively low in thalamus, amygdala, and hippocampus. See
text for details. Right hemispheres: Topographical distribution of DA cell bodies (filled circles) and their terminals (lines). In the primate panel, red circles
represent DA cell bodies in the ventral tegmental area (VTA) with terminals in the cortex, striatum (in particular, the ventral part), pallidum, thalamus, and
amygdala. The VTA dopaminergic cellular organization is better characterized in the rodent where discrete VTA cell groups project to the cortex (red), nucleus
accumbens (dark green), and amygdala (orange). In the primate brain, substantia nigra (SN) dorsal tier cell group (light green) projects to the cortex and ventral
striatum as well as the pallidum, thalamus, and amygdala. The rodent brain, in contrast, has a low density of these dorsal tier neurons. The SN ventral tier
groups (SN compacta densocellular part [dark blue] and fingers [light blue]) project heavily and topographically to caudate-putamen with medium to low
innervations of cortex, ventral striatum, thalamus, and amygdala. See text for further details. SNc, SN pars compacta; SNr, SN pars reticulata.

areas have different intrinsic properties and afferents regulat-
ing spike activity; synthesis, release, or reuptake of DA; and
postsynaptic effects (101-104) (Figure 3). Dorsal tier DA
neurons, a band along the dorsal SN pars compacta (SNc)
and contiguous regions of ventral tegmental area and retro-
rubral field, project to cerebral cortex, ventromedial striatum,

pallidum, “extended amygdala,” and thalamus. The ventral tier
neurons, including the densocellular region of the SNc and DA
cell columns within the SN pars reticulata (SNr), project to the
striatum. The SMST receives a dense projection, with high
density of DA release sites (104), accounting for the higher
PET DA release signal, and highest levels of DAT, exerting
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Figure 3. Topography of dopamine
(DA) release findings in patients with
schizophrenia compared with control
subjects. Schematic representations
of DA release characteristics in the
cortex (top), striatum (middle), and
midbrain (bottom) in healthy control
subjects and patients with schizo-
phrenia based on imaging findings in
patients. DA neuron cell bodies, term-
inals, and transmitters are depicted in
red. Color gradients depict DA term-
inal densities. Cortex: The cortex
receives sparse dopaminergic inner-
vation that is poor in dopamine D, and
transporter expression. This sculpts
D, displacement measurement, which
is low in the cortex. In schizophrenia,
there is evidence for reduced cortical
DA release. See text for details. Stria-
tum: DA and cortical neuron terminals
(green) are shown innervating medium
spiny neuron spines (orange). Also
shown are local cholinergic (blue)
and gamma-aminobutyric acidergic
(GABAergic)  (brown) interneuron

D2 Medium spiny neurons (D2 MSN)

Dopamine transmitter

High terminal density
Medium terminal density
Low-Medium terminal density
Low terminal density

High cell density
Medium cell density
Low cell density

D1 receptor
D2 receptor

DAT
NMDA receptor populations forming the striatal micro-
AMPA receptor circuitry. There is considerable het-

erogeneity in DA release across
striatal regions (e.g., dopaminergic
innervation of ventral striatum, also
referred to as limbic striatum) is rela-
tively sparse and is derived from
dorsal tier cell groups that are poor
in Do and dopamine transporter (DAT).
In contrast, the sensorimotor striatum
receives dense dopaminergic inputs
mostly from the ventral tier DA neu-
rons that are rich in D, and DAT. A
greater number of synapse sites in the
ventral striatum and high levels of D,
and DAT in sensorimotor striatum
may account for high D, displacement
in these regions. Compared with
ventral striatum and sensorimotor
striatum, stimulant-induced D, displa-
cement is low in the associative stria-
tum. In schizophrenia, DA release is
increased across substriatal divisions
secondary to a prominent increase in
the associative striatum. Midbrain:
Shown are DA cell bodies, local
GABAergic interneurons (brown), and
D1 medium spiny neuron terminals
(yellow). Although there is heteroge-
neity in the level of expression of D,
receptors and DAT (e.g., dorsal tier
and especially medial ventral tegmen-

mACh receptor
nACh receptor

tal area neurons have low D, and DAT levels), imaging studies showing subregional analysis of D, displacement are lacking. However, in schizophrenia, there
is a reduced stimulant-induced D, displacement. AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; ChAT, choline acetyltransferase; D1, D4
receptor; D,, D, receptor; mACh, muscarinic acetylcholine; nACh, nicotinic acetylcholine; NMDA, N-methyl-D-aspartate.

tighter spatiotemporal regulation of DA diffusion compared
with other subregions. The ventral striatum, innervated by
ventral tegmental area and medial SNc DA neurons, has lower
DA release potential and lower levels of DAT and D, autor-
eceptors (105,106). The AST receives a mosaic of dorsal and
ventral tier neurons.

6 Biological Psychiatry 1, 2016; 1:1m-1l www.sobp.org/journal

The SMST, AST, and ventral striatum also differ in gluta-
matergic, cholinergic, and other local (e.g., opioidergic) mod-
ulation of DA release, owing to neurochemically distinct
compartments within each of these subregions, called patch
(or striosome) and matrix. These refer to a “mosaic” pattern of
grouping of neurons that have differential neurochemical
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characteristics and specific connections to cortex and other
brain regions (Figure 4). In the SMST, the ventral tier DA
neurons innervate both the mu opioid receptor and substance
P-rich “patch” and the enkephalin-rich “matrix” compart-
ments; in the AST, ventral tier innervation is selective to
patches. This has implications for DA modulation of cortical
afferents, as patches receive projections from limbic (e.g.,
amygdala) and paralimbic cortical areas (e.g., orbitofrontal
cortex), whereas the matrix receives input from other prefron-
tal cortical regions, such as dorsolateral prefrontal cortex.

Striatal Organization

The topography of DA projections interfaces with regional and
subcellular localization of DA receptors (Figure 3), which have
fivefold to 20-fold higher density in striatum compared with
other regions (28,86,101-103,107-110). Postsynaptic D; and
D, are segregated onto different subpopulations of projection
neurons and expressed on striatal interneurons. Cholinergic
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Figure 4. Striatal patch-matrix con-
nectome. Schematic representation of
striatal patch-matrix connectome.
Afferents: The cortex topographically
projects to the striatum. Within the
cortex, deeper cortical layers inner-
vate striatal patches (dark brown),
whereas the surrounding matrix (light
brown) is innervated by superficial
cortical layers (light brown). Within
the midbrain, the dorsal tier (orange
and yellow) innervates the matrix, as
do the nondopaminergic cells (dark
green) from the same region. Patch
innervation from the midbrain is
mostly derived from the ventral tier
cell groups (dark blue). Nondopami-
nergic (presumably gamma-aminobu-
tyric acidergic) projection neurons
within the substantia nigra pars reti-
culata (SNr) innervate the striatal
matrix complex. Efferents: Striatal
patch neurons (maroon) mostly pro-
ject to ventral tier dopamine (DA) cells.
These include both D; receptor—
expressing medium spiny neurons
and other striatal projection neurons.
Striatal projection neurons within the
matrix project to both dopamine and
nondopaminergic populations within
the dorsal tier and gamma-aminobu-
tyric acidergic populations in the SNr.
See text for further details. ACC,
anterior cingulate cortex; AST, asso-
ciative striatum; DLPFC, dorsolateral
prefrontal cortex; DPFC, dorsal pre-
frontal cortex; dSNc, dorsal tier sub-
stantia nigra pars compacta; OFC/
VMPFC, orbitofrontal cortex/ventro-
medial prefrontal cortex; SMC, sen-
sorimotor cortex; SMST, sensorimotor
striatum; SNc, SN pars compacta;
vSNc, ventral tier SN pars compacta;
VST, ventral striatum; VTA, ventral
tegmental area.

interneurons express D»-like receptors that mediate fast
synaptic events and locally regulate DA release (104,111).
Taken together, ultrastructural and electrophysiologic experi-
ments indicate that D,-like receptors are positioned preferen-
tially to mediate DA effects on striatopallidal projection
neurons and cholinergic interneurons (28,112). As with DA
inputs, DA receptors and modulators of DA release show
distinct patch-matrix distributions in AST and SMST: patches
are richer in D4 receptors, lack parvalbumin-expressing inter-
neurons, and show a paucity of cholinergic innervation as
indexed by acetylcholinesterase fiber staining (103). Adding to
this complexity, neuromodulators differentially affect DA
release and projection neuron activity across the patch-
matrix organization; for example, substance P facilitates DA
release within the patch center, decreases it at the patch-
matrix border, and has no effect in the matrix, whereas
enkephalin selectively boosts patch projection output via delta
opioid—mediated disinhibitory mechanisms (113,114).
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Extrastriatal Organization

Extrastriatal regions including cortex are innervated predom-
inantly by the dorsal tier DA system (Figure 2), which is poor in
transporter and D, autoreceptors (101-103). In contrast to low
innervation densities in rodents, primates have a dense
and extensive cortical DA innervation (115). However, sparse
cortical DAT expression suggests a low incidence of DA
release sites (106). Moreover, low D, density and hetero-
geneous synaptology and DA receptor topography (28) all
are consistent with the smaller PET DA release signal in
extrastriatal regions. In cortex, D, are evenly distributed across
projection neurons and fast-spiking interneurons (28,116).
Thus, tracer displacement at D, on fast-spiking interneurons
may contribute more to the PET DA release signal in the cortex
than in the striatum. Spatiotemporal regulation of DA release
and localization of D,-like receptors varies considerably
across regions and adds complexity to the interpretation of
regional and disease-related variation in the PET DA release
signal (Figure 3).

DISCUSSION

The literature reviewed here shows that 1) stimulant-induced
presynaptic DA release is decreased in most brain regions in
SZ (16), with the exception of the striatum where it is
enhanced, especially in the rostral caudate (59); 2) in this
region, the excess is not observed under conditions of
substance abuse despite psychosis (11,82); 3) alterations in
expression levels of receptors and transporters are less
reliably observed (51,88), which does not exclude an alteration
in function of these receptors in SZ because even under
conditions of low DA tone, as in comorbidity with addiction,
blocking striatal D, remains therapeutic, and stimulating
striatal D, is psychotogenic (82); 4) antipsychotic exposure
results in upregulation of striatal D, (51) and may induce
downregulation, or normalization, of cortical D4 (75); and 5) the
global nature of the presynaptic DA dysregulation is likely to
massively alter information processing in multiple domains
and result in the global symptoms that we observe in SZ,
although the specific mechanisms that mediate the formation
of abnormal learning (117) and symptoms are currently
unknown.

It remains to be seen whether extrastriatal DA deficits occur
in the same subjects who display striatal DA upregulation,
yielding a “dual dysregulation” of DA alteration, as proposed in
the reformulation of the DA hypothesis of SZ (5,6). From this
perspective, studies using stimulant challenge and studies
using ['®F]DOPA have provided convergent results in striatum
but not in extrastriatal regions. However, when investigators
included metabolism of ['®F]6-FDA (Kiess) (46) in their model,
they observed higher kioss in the amygdala and midbrain in SZ,
indicating a possible state of lower intracellular DA tone;
excessive washout of DA is consistent with the lower evoked
release that we observed. This provides one potential mech-
anism to reconcile these findings and to support our obser-
vation of extrastriatal DA release deficits. The finding of
increased K;°®" (91) is potentially susceptible to group differ-
ences in cerebellar concentration of ['®F]DOPA. Additional
support to our finding of cortical and midbrain deficit derives
from the postmortem observations of reduced tyrosine
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hydroxylase (118,119); however, high tyrosine hydroxylase
(91) and high (120) or normal (121) tyrosine hydroxylase
messenger RNA have also been reported. More research is
needed to understand these discrepancies.

Because one of the main findings in SZ is dysregulation of
presynaptic DA function, we have reviewed the multifactorial
regulation of DA release and its detection with PET. The AST is
of particular interest. In HC subjects, the PET DA release
signal in the AST is lower than in the SMST (9,14,59), whereas
in patients with SZ, it is increased to levels similar to the
SMST. We speculate that in the healthy brain, subregional
differences may reflect differences in DA innervation, regula-
tion of DA release, or distributions of perisynaptic D.-like
receptors. The difference in the patch-to-matrix ratio between
the AST and SMST could also reflect and/or contribute to
lower spontaneous DA release in AST (104,122,123). For
example, given the low cholinergic innervation of patches,
acetylcholine augmentation of DA release may be lower in this
compartment and relatively lower in the patch-enriched AST.
We could postulate that, in SZ, a disruption of brain develop-
ment leads to abnormal or incomplete development of the
AST, consistent with structural imaging studies showing lower
caudate volume in early-stage, unmedicated patients with SZ
relative to HC subjects (103,124). A developmental disruption
leading to altered differentiation of AST from SMST and/or
lower patch/matrix compartmentalization in the AST might
lead to abnormalities in the patterning of DA and other inputs
to the AST, DA interactions with acetylcholine and other
striatal neurotransmitters (103,104), and DA modulation of
cortical inputs to the AST (125). Testing these ideas requires
updating the existing postmortem literature (124) with studies
applying modern labeling and imaging methods to render the
three-dimensional chemoarchitecture of the striatal complex in
healthy humans and patients with SZ. Additional models that
consider regional and subregional variation in DA synaptology
and modulation of DA release across striatal subcompart-
ments are also needed.

The mechanisms underlying cortical deficits in the PET DA
release signal in SZ remain to be determined, but given the
distribution of D, receptors, they may involve changes in DA
signaling at a variety of neuronal populations including cortical
interneurons. The generalized and profound deficits in extra-
striatal DA release raise an important therapeutic challenge for
the field, as currently approved antipsychotics do not remedy
this deficit or the resultant low stimulation of extrastriatal
dopaminergic receptors. This generalized deficit is also con-
sistent with the multidomain functional manifestations of the
illness, ranging from deficits in social cognition to deficits in
executive function and motivation. Although higher DA may be
linked to better cognition in a brain without SZ (126-129), in
SZ, higher DA may have a dysfunctional impact either because
of its modulatory role on an already abnormal circuitry
or because of intrinsic aberrant dynamics of DA cell firing
patterns.

CONCLUSIONS

Although this literature does not provide mechanistic under-
standing of the dysfunction, it has provided a refined topo-
graphical knowledge that can be used in translational studies
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and in drug development. Knowledge is limited at this point
regarding the specific alterations in the multiple cellular
components that could mediate the altered PET DA signal in
SZ. We have reviewed and discussed a few “suspect” cellular
mechanisms. These need to be formally tested in postmortem
tissue, in animal models that show DA dysregulation, and in
cellular systems such as induced pluripotent stem cells from
patients who show abnormal DA PET signal to isolate specific
components that may be involved. Once those components
are defined, they can be used in drug development as specific
targets for novel therapies. Our review highlights the urgent
need for this cellular work to be carried out in tandem with
imaging in patients.
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